Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 839
Filtrar
1.
Channels (Austin) ; 18(1): 2341077, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38601983

RESUMEN

Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.


Asunto(s)
Canales de Calcio , Calcio , Calcio/metabolismo , Canales de Calcio/metabolismo , Transducción de Señal , Acoplamiento Excitación-Contracción , Iones/metabolismo , Señalización del Calcio/fisiología , Canales de Calcio Tipo L/metabolismo
2.
J Cardiovasc Electrophysiol ; 35(5): 895-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433304

RESUMEN

INTRODUCTION: Cardiac contractility modulation (CCM) is a medical device-based therapy delivering non-excitatory electrical stimulations to the heart to enhance cardiac function in heart failure (HF) patients. The lack of human in vitro tools to assess CCM hinders our understanding of CCM mechanisms of action. Here, we introduce a novel chronic (i.e., 2-day) in vitro CCM assay to evaluate the effects of CCM in a human 3D microphysiological system consisting of engineered cardiac tissues (ECTs). METHODS: Cryopreserved human induced pluripotent stem cell-derived cardiomyocytes were used to generate 3D ECTs. The ECTs were cultured, incorporating human primary ventricular cardiac fibroblasts and a fibrin-based gel. Electrical stimulation was applied using two separate pulse generators for the CCM group and control group. Contractile properties and intracellular calcium were measured, and a cardiac gene quantitative PCR screen was conducted. RESULTS: Chronic CCM increased contraction amplitude and duration, enhanced intracellular calcium transient amplitude, and altered gene expression related to HF (i.e., natriuretic peptide B, NPPB) and excitation-contraction coupling (i.e., sodium-calcium exchanger, SLC8). CONCLUSION: These data represent the first study of chronic CCM in a 3D ECT model, providing a nonclinical tool to assess the effects of cardiac electrophysiology medical device signals complementing in vivo animal studies. The methodology established a standardized 3D ECT-based in vitro testbed for chronic CCM, allowing evaluation of physiological and molecular effects on human cardiac tissues.


Asunto(s)
Células Madre Pluripotentes Inducidas , Contracción Miocárdica , Miocitos Cardíacos , Ingeniería de Tejidos , Humanos , Miocitos Cardíacos/metabolismo , Células Cultivadas , Células Madre Pluripotentes Inducidas/metabolismo , Señalización del Calcio , Factores de Tiempo , Acoplamiento Excitación-Contracción , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Terapia por Estimulación Eléctrica/instrumentación , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/metabolismo
3.
Commun Biol ; 7(1): 220, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388802

RESUMEN

Dysfunctional Ca2+ signaling affects the myocardial systole and diastole, may trigger arrhythmia and cause transcriptomic and proteomic modifications in heart failure. Thus, synchronous real-time measurement of Ca2+ and force is essential to investigate the relationship between contractility and Ca2+ signaling and the alteration of excitation-contraction coupling (ECC) in human failing myocardium. Here, we present a method for synchronized acquisition of intracellular Ca2+ and contraction force in long-term cultivated slices of human failing myocardium. Synchronous time series of contraction force and intracellular Ca2+ were used to calculate force-calcium loops and to analyze the dynamic alterations of ECC in response to various pacing frequencies, post-pause potentiation, high mechanical preload and pharmacological interventions in human failing myocardium. We provide an approach to simultaneously and repeatedly investigate alterations of contractility and Ca2+ signals in long-term cultured myocardium, which will allow detecting the effects of electrophysiological or pharmacological interventions on human myocardial ECC.


Asunto(s)
Insuficiencia Cardíaca , Proteómica , Humanos , Miocardio , Acoplamiento Excitación-Contracción/fisiología , Fenómenos Mecánicos
5.
J Mol Cell Cardiol ; 186: 107-110, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37993093

RESUMEN

In heart muscle, the physiological function of IP3-induced Ca2+ release (IP3ICR) from the sarcoplasmic reticulum (SR) is still the subject of intense study. A role of IP3ICR may reside in modulating Ca2+-dependent cardiac arrhythmogenicity. Here we observe the propensity of spontaneous intracellular Ca2+ waves (SCaW) driven by Ca2+-induced Ca2+ release (CICR) in ventricular myocytes as a correlate of arrhythmogenicity on the organ level. We observe a dual mode of action of IP3ICR on SCaW generation in an IP3R overexpression model. This model shows a mild cardiac phenotype and mimics pathophysiological conditions of increased IP3R activity. In this model, IP3ICR was able to increase or decrease the occurrence of SCaW depending on global Ca2+ activity. This IP3ICR-based regulatory mechanism can operate in two "modes" depending on the intracellular CICR activity and efficiency (e.g. SCaW and/or local Ryanodine Receptor (RyR) Ca2+ release events, respectively): a) in a mode that augments the CICR mechanism at the cellular level, resulting in improved excitation-contraction coupling (ECC) and ultimately better contraction of the myocardium, and b) in a protective mode in which the CICR activity is curtailed to prevent the occurrence of Ca2+ waves at the cellular level and thus reduce the probability of arrhythmogenicity at the organ level.


Asunto(s)
Miocitos Cardíacos , Retículo Sarcoplasmático , Humanos , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Calcio/metabolismo , Señalización del Calcio , Acoplamiento Excitación-Contracción , Arritmias Cardíacas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-38113964

RESUMEN

In addition to their well-known classical effects, cannabinoid CB1 and CB2 receptors have also been involvement in both deleterious and protective actions on the heart under various pathological conditions. While the potential therapeutic applications of the endocannabinoid system in the context of cardiovascular function are indeed a viable prospect, significant debate exists within the literature regarding whether CB1, CB2, or a combination of both receptors exert a favorable influence on cardiac function. Hence, the aim of this study was to investigate the effects of CB1 + CB2 or CB2 agonists on cardiac excitation-contraction (E-C) coupling, utilizing fish (Brycon amazonicus) as an experimental model. The CB2 agonist elicited marked positive inotropic and lusitropic responses in isolated ventricular myocardium, induced cyclic adenosine 3',5'-monophosphate (cAMP) production, and upregulated critical Ca2+ handling proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). Our current study demonstrated, for the first time, that CB2 receptor activation-induced effects improved the efficiency of Ca2+ cycling, excitation-contraction coupling (E-C coupling), and cardiac performance in under physiological conditions. Hence, CB2 receptors could be considered a potential therapeutic target for modulating cardiac contractile dysfunctions.


Asunto(s)
Cannabinoides , Characiformes , Animales , Receptores de Cannabinoides/metabolismo , Miocardio/metabolismo , Corazón , Acoplamiento Excitación-Contracción , Agonistas de Receptores de Cannabinoides/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB1/metabolismo
7.
Science ; 381(6665): 1412-1413, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37769094
8.
J Gen Physiol ; 155(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37728575

RESUMEN

Earlier work has shown that ventricular ryanodine receptors (RyR2) within a cluster rearrange on phosphorylation as well as with a number of other stimuli. Using dSTORM, we investigated the effects of 300 nmol/liter isoproterenol on RyR2 clusters. In rat ventricular cardiomyocytes, there was a symmetrical enlargement of RyR2 cluster areas, a decrease in the edge-to-edge nearest neighbor distance, and distribution changes that suggested movement to increase the cluster areas by coalescence. The surface area covered by the phosphorylated clusters was significantly greater than in the control cells, as was the cluster density. This latter change was accompanied by a decreased cluster fragmentation, implying that new tetramers were brought into the sarcoplasmic reticulum. We propose a possible mechanism to explain these changes. We also visualized individual RyR2 tetramers and confirmed our earlier electron-tomographic finding that the tetramers are in a disorganized but non-random array occupying about half of the cluster area. Multiclusters, cluster groups defined by the maximum distance between their members, were analyzed for various distances. At 100 nm, the areas occupied by the multiclusters just exceeded those of the single clusters, and more than half of the multiclusters had only a single subcluster that could initiate a spark. Phosphorylation increased the size of the multiclusters, markedly so for distances >100 nm. There was no relationship between the number of subclusters in a group and the area covered by it. We conclude that isoproterenol induces rapid, significant, changes in the molecular architecture of excitation-contraction coupling.


Asunto(s)
Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Animales , Ratas , Isoproterenol/farmacología , Acoplamiento Excitación-Contracción , Análisis por Conglomerados
9.
Biomolecules ; 13(9)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759809

RESUMEN

Heart failure is a serious global health challenge, affecting more than 6.2 million people in the United States and is projected to reach over 8 million by 2030. Independent of etiology, failing hearts share common features, including defective calcium (Ca2+) handling, mitochondrial Ca2+ overload, and oxidative stress. In cardiomyocytes, Ca2+ not only regulates excitation-contraction coupling, but also mitochondrial metabolism and oxidative stress signaling, thereby controlling the function and actual destiny of the cell. Understanding the mechanisms of mitochondrial Ca2+ uptake and the molecular pathways involved in the regulation of increased mitochondrial Ca2+ influx is an ongoing challenge in order to identify novel therapeutic targets to alleviate the burden of heart failure. In this review, we discuss the mechanisms underlying altered mitochondrial Ca2+ handling in heart failure and the potential therapeutic strategies.


Asunto(s)
Calcio , Insuficiencia Cardíaca , Humanos , Calcio/metabolismo , Acoplamiento Excitación-Contracción , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Mitocondrias Cardíacas/metabolismo
10.
J Mol Cell Cardiol ; 182: 44-53, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37433391

RESUMEN

Cardiac excitation-contraction coupling (ECC) depends on Ca2+ release from intracellular stores via ryanodine receptors (RyRs) triggered by L-type Ca2+ channels (LCCs). Uncertain numbers of RyRs and LCCs form 'couplons' whose activation produces Ca2+ sparks, which summate to form a cell-wide Ca2+ transient that switches on contraction. Voltage (Vm) changes during the action potential (AP) and stochasticity in channel gating should create variability in Ca2+ spark timing, but Ca2+ transient wavefronts have remarkable uniformity. To examine how this is achieved, we measured the Vm-dependence of evoked Ca2+ spark probability (Pspark) and latency over a wide voltage range in rat ventricular cells. With depolarising steps, Ca2+ spark latency showed a U-shaped Vm-dependence, while repolarising steps from 50 mV produced Ca2+ spark latencies that increased monotonically with Vm. A computer model based on reported channel gating and geometry reproduced our experimental data and revealed a likely RyR:LCC stoichiometry of âˆ¼ 5:1 for the Ca2+ spark initiating complex (IC). Using the experimental AP waveform, the model revealed a high coupling fidelity (Pcpl âˆ¼ 0.5) between each LCC opening and IC activation. The presence of âˆ¼ 4 ICs per couplon reduced Ca2+ spark latency and increased Pspark to match experimental data. Variability in AP release timing is less than that seen with voltage steps because the AP overshoot and later repolarization decrease Pspark due to effects on LCC flux and LCC deactivation respectively. This work provides a framework for explaining the Vm- and time-dependence of Pspark, and indicates how ion channel dispersion in disease can contribute to dyssynchrony in Ca2+ release.


Asunto(s)
Señalización del Calcio , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Acoplamiento Excitación-Contracción , Canales Iónicos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Retículo Sarcoplasmático/metabolismo
11.
Europace ; 25(6)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37387319

RESUMEN

The sarcoplasmatic reticulum (SR) cardiac ryanodine receptor/calcium release channel RyR2 is an essential regulator of cardiac excitation-contraction coupling and intracellular calcium homeostasis. Mutations of the RYR2 are the cause of rare, potentially lethal inherited arrhythmia disorders. Catecholaminergic polymorphic ventricular tachycardia (CPVT) was first described more than 20 years ago and is the most common and most extensively studied cardiac ryanodinopathy. Over time, other distinct inherited arrhythmia syndromes have been related to abnormal RyR2 function. In addition to CPVT, there are at least two other distinct RYR2-ryanodinopathies that differ mechanistically and phenotypically from CPVT: RYR2 exon-3 deletion syndrome and the recently identified calcium release deficiency syndrome (CRDS). The pathophysiology of the different cardiac ryanodinopathies is characterized by complex mechanisms resulting in excessive spontaneous SR calcium release or SR calcium release deficiency. While the vast majority of CPVT cases are related to gain-of-function variants of the RyR2 protein, the recently identified CRDS is linked to RyR2 loss-of-function variants. The increasing number of these cardiac 'ryanodinopathies' reflects the complexity of RYR2-related cardiogenetic disorders and represents an ongoing challenge for clinicians. This state-of-the-art review summarizes our contemporary understanding of RYR2-related inherited arrhythmia disorders and provides a systematic and comprehensive description of the distinct cardiac ryanodinopathies discussing clinical aspects and molecular insights. Accurate identification of the underlying type of cardiac ryanodinopathy is essential for the clinical management of affected patients and their families.


Asunto(s)
Calcio , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Corazón , Acoplamiento Excitación-Contracción , Mutación
12.
Methods Mol Biol ; 2644: 177-192, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37142922

RESUMEN

Muscle cells (i.e. skeletal muscle fibers) are fully viable and functional when their excitation-contraction (EC) coupling machinery is intact. This involves intact membrane integrity with polarized membrane, functional ion channels for action potential generation and conduction, an intact electro-chemical interface at the level of the fiber's triad, followed by sarcoplasmic reticulum Ca2+ release, and subsequent activation of the chemico-mechanical interface at the level of the contractile apparatus. The ultimate end result is then a visible twitch contraction upon a brief electrical pulse stimulation. For many biomedical studies involving single muscle cells, intact and viable myofibers are of utmost importance. Thus, a simple global screening method that involves a brief electrical stimulus applied to single muscle fibers and assessment of visible contraction would be of high value. In this chapter, we describe step-by-step protocols to (i) obtain intact single muscle fibers from freshly dissected muscle tissue using an enzymatic digestion procedure and (ii) provide a workflow for the assessment of twitch response of single fibers that can be ultimately classified as viable. For this, we have prepared a unique stimulation pen for which we provide the fabrication guide for do-it-yourself rapid prototyping to eliminate the need for expensive specialized commercial equipment.


Asunto(s)
Contracción Muscular , Fibras Musculares Esqueléticas , Supervivencia Celular , Fibras Musculares Esqueléticas/metabolismo , Contracción Muscular/fisiología , Retículo Sarcoplasmático/metabolismo , Acoplamiento Excitación-Contracción , Músculo Esquelético/metabolismo , Calcio/metabolismo , Estimulación Eléctrica
13.
Physiol Rep ; 11(9): e15675, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147904

RESUMEN

In skeletal muscle, CaV 1.1 serves as the voltage sensor for both excitation-contraction coupling (ECC) and L-type Ca2+ channel activation. We have recently adapted the technique of action potential (AP) voltage clamp (APVC) to monitor the current generated by the movement of intramembrane voltage sensors (IQ ) during single imposed transverse tubular AP-like depolarization waveforms (IQAP ). We now extend this procedure to monitoring IQAP , and Ca2+ currents during trains of tubular AP-like waveforms in adult murine skeletal muscle fibers, and compare them with the trajectories of APs and AP-induced Ca2+ release measured in other fibers using field stimulation and optical probes. The AP waveform remains relatively constant during brief trains (<1 sec) for propagating APs in non-V clamped fibers. Trains of 10 AP-like depolarizations at 10 Hz (900 ms), 50 Hz (180 ms), or 100 Hz (90 ms) did not alter IQAP amplitude or kinetics, consistent with previous findings in isolated muscle fibers where negligible charge immobilization occurred during 100 ms step depolarizations. Using field stimulation, Ca2+ release did exhibit a considerable decline from pulse to pulse during the train, also consistent with previous findings, indicating that the decline of Ca2+ release during a short train of APs is not correlated to modification of charge movement. Ca2+ currents during single or 10 Hz trains of AP-like depolarizations were hardly detectable, were minimal during 50 Hz trains, and became more evident during 100 Hz trains in some fibers. Our results verify predictions on the behavior of the ECC machinery in response to AP-like depolarizations and provide a direct demonstration that Ca2+ currents elicited by single AP-like waveforms are negligible, but can become more prominent in some fibers during short high-frequency train stimulation that elicits maximal isometric force.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Ratones , Animales , Potenciales de Acción/fisiología , Fibras Musculares Esqueléticas/fisiología , Acoplamiento Excitación-Contracción , Calcio
14.
Basic Res Cardiol ; 118(1): 13, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36988697

RESUMEN

The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca2+ channels critical for EC coupling in close proximity, the L-type Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca2+-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca2+ transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Acoplamiento Excitación-Contracción , Señalización del Calcio , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(14): e2221242120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36976770

RESUMEN

CaV1.2 channels are critical players in cardiac excitation-contraction coupling, yet we do not understand how they are affected by an important therapeutic target of heart failure drugs and regulator of blood pressure, angiotensin II. Signaling through Gq-coupled AT1 receptors, angiotensin II triggers a decrease in PIP2, a phosphoinositide component of the plasma membrane (PM) and known regulator of many ion channels. PIP2 depletion suppresses CaV1.2 currents in heterologous expression systems but the mechanism of this regulation and whether a similar phenomenon occurs in cardiomyocytes is unknown. Previous studies have shown that CaV1.2 currents are also suppressed by angiotensin II. We hypothesized that these two observations are linked and that PIP2 stabilizes CaV1.2 expression at the PM and angiotensin II depresses cardiac excitability by stimulating PIP2 depletion and destabilization of CaV1.2 expression. We tested this hypothesis and report that CaV1.2 channels in tsA201 cells are destabilized after AT1 receptor-triggered PIP2 depletion, leading to their dynamin-dependent endocytosis. Likewise, in cardiomyocytes, angiotensin II decreased t-tubular CaV1.2 expression and cluster size by inducing their dynamic removal from the sarcolemma. These effects were abrogated by PIP2 supplementation. Functional data revealed acute angiotensin II reduced CaV1.2 currents and Ca2+ transient amplitudes thus diminishing excitation-contraction coupling. Finally, mass spectrometry results indicated whole-heart levels of PIP2 are decreased by acute angiotensin II treatment. Based on these observations, we propose a model wherein PIP2 stabilizes CaV1.2 membrane lifetimes, and angiotensin II-induced PIP2 depletion destabilizes sarcolemmal CaV1.2, triggering their removal, and the acute reduction of CaV1.2 currents and contractility.


Asunto(s)
Angiotensina II , Acoplamiento Excitación-Contracción , Células Cultivadas , Angiotensina II/metabolismo , Transducción de Señal , Miocitos Cardíacos/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
16.
Channels (Austin) ; 17(1): 2167569, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36642864

RESUMEN

The CaV1.1 voltage-gated Ca2+ channel carries L-type Ca2+ current and is the voltage-sensor for excitation-contraction (EC) coupling in skeletal muscle. Significant breakthroughs in the EC coupling field have often been close on the heels of technological advancement. In particular, CaV1.1 was the first voltage-gated Ca2+ channel to be cloned, the first ion channel to have its gating current measured and the first ion channel to have an effectively null animal model. Though these innovations have provided invaluable information regarding how CaV1.1 detects changes in membrane potential and transmits intra- and inter-molecular signals which cause opening of the channel pore and support Ca2+ release from the sarcoplasmic reticulum remain elusive. Here, we review current perspectives on this topic including the recent application of functional site-directed fluorometry.


Asunto(s)
Canales de Calcio Tipo L , Músculo Esquelético , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Músculo Esquelético/metabolismo , Acoplamiento Excitación-Contracción/fisiología , Potenciales de la Membrana/fisiología , Retículo Sarcoplasmático/metabolismo , Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
17.
Handb Exp Pharmacol ; 279: 3-39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36592225

RESUMEN

In skeletal muscle, excitation-contraction (EC) coupling relies on the mechanical coupling between two ion channels: the L-type voltage-gated calcium channel (CaV1.1), located in the sarcolemma and functioning as the voltage sensor of EC coupling, and the ryanodine receptor 1 (RyR1), located on the sarcoplasmic reticulum serving as the calcium release channel. To this day, the molecular mechanism by which these two ion channels are linked remains elusive. However, recently, skeletal muscle EC coupling could be reconstituted in heterologous cells, revealing that only four proteins are essential for this process: CaV1.1, RyR1, and the cytosolic proteins CaVß1a and STAC3. Due to the crucial role of these proteins in skeletal muscle EC coupling, any mutation that affects any one of these proteins can have devastating consequences, resulting in congenital myopathies and other pathologies.Here, we summarize the current knowledge concerning these four essential proteins and discuss the pathophysiology of the CaV1.1, RyR1, and STAC3-related skeletal muscle diseases with an emphasis on the molecular mechanisms. Being part of the same signalosome, mutations in different proteins often result in congenital myopathies with similar symptoms or even in the same disease.


Asunto(s)
Canalopatías , Enfermedades Musculares , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Canalopatías/genética , Proteínas Adaptadoras Transductoras de Señales , Acoplamiento Excitación-Contracción/fisiología , Músculo Esquelético/fisiología , Enfermedades Musculares/genética , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Señalización del Calcio
18.
Herz ; 48(2): 123-133, 2023 Mar.
Artículo en Alemán | MEDLINE | ID: mdl-36700949

RESUMEN

Heart failure is characterized by defects in excitation-contraction coupling, energetic deficit and oxidative stress. The energy for cardiac contraction and relaxation is provided in mitochondria, whose function is tightly regulated by excitation-contraction coupling in cardiac myocytes. In heart failure with reduced ejection fraction (HFrEF), alterations in the ion balance in cardiac myocytes impair mitochondrial Ca2+ uptake, which is required for activation of the Krebs cycle, causing an energetic deficit and oxidative stress in mitochondria. Recent clinical studies suggest that in heart failure with preserved ejection fraction (HFpEF), in stark contrast to HFrEF, hypercontractility often occurs as an attempt to compensate for a pathological increase in systemic and pulmonary vascular resistance. This hypercontractility increases cardiac energy and oxygen demands at rest and reduces the contractile, diastolic and coronary reserves, preventing an adequate increase in cardiac output during exercise. Moreover, increased contractility causes long-term maladaptive remodeling processes due to oxidative stress and redox-sensitive prohypertrophic signaling pathways. As overweight and diabetes, particularly in the interplay with hemodynamic stress, are important risk factors for the development of HFpEF, interventions targeting metabolism in particular could ameliorate the development and progression of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Volumen Sistólico , Miocitos Cardíacos , Estrés Oxidativo , Acoplamiento Excitación-Contracción
19.
Adv Biol (Weinh) ; 7(5): e2200117, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36216583

RESUMEN

Excitation-coupling (ECC) is paramount for coordinated contraction to maintain sufficient cardiac output. The study of ECC regulation has primarily been limited to cardiomyocytes (CMs), which conduct voltage waves via calcium fluxes from one cell to another, eliciting contraction of the atria followed by the ventricles. CMs rapidly transmit ionic flux via gap junction proteins, predominantly connexin 43. While the expression of connexin isoforms has been identified in each of the individual cell populations comprising the heart, the formation of gap junctions with nonmuscle cells (i.e., macrophages and Schwann cells) has gained new attention. Evaluating nonmuscle contributions to ECC in vivo or in situ remains difficult and necessitates the development of simple, yet biomimetic in vitro models to better understand and prevent physiological dysfunction. Standard 2D cell culture often consists of homogenous cell populations and lacks the dynamic mechanical environment of native tissue, confounding the phenotypic and proteomic makeup of these highly mechanosensitive cell populations in prolonged culture conditions. This review will highlight the recent developments and the importance of new microphysiological systems to better understand the complex regulation of ECC in cardiac tissue.


Asunto(s)
Acoplamiento Excitación-Contracción , Proteómica , Acoplamiento Excitación-Contracción/fisiología , Miocitos Cardíacos/metabolismo , Ventrículos Cardíacos , Atrios Cardíacos , Conexinas/metabolismo
20.
J Gen Physiol ; 155(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36409218

RESUMEN

The expression of the Huntingtin protein, well known for its involvement in the neurodegenerative Huntington's disease, has been confirmed in skeletal muscle. The impact of HTT deficiency was studied in human skeletal muscle cell lines and in a mouse model with inducible and muscle-specific HTT deletion. Characterization of calcium fluxes in the knock-out cell lines demonstrated a reduction in excitation-contraction (EC) coupling, related to an alteration in the coupling between the dihydropyridine receptor and the ryanodine receptor, and an increase in the amount of calcium stored within the sarcoplasmic reticulum, linked to the hyperactivity of store-operated calcium entry (SOCE). Immunoprecipitation experiments demonstrated an association of HTT with junctophilin 1 (JPH1) and stromal interaction molecule 1 (STIM1), both providing clues on the functional effects of HTT deletion on calcium fluxes. Characterization of muscle strength and muscle anatomy of the muscle-specific HTT-KO mice demonstrated that HTT deletion induced moderate muscle weakness and mild muscle atrophy associated with histological abnormalities, similar to the phenotype observed in tubular aggregate myopathy. Altogether, this study points toward the hypotheses of the involvement of HTT in EC coupling via its interaction with JPH1, and on SOCE via its interaction with JPH1 and/or STIM1.


Asunto(s)
Calcio , Retículo Sarcoplasmático , Ratones , Humanos , Animales , Calcio/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Retículo Sarcoplasmático/metabolismo , Músculo Esquelético/metabolismo , Acoplamiento Excitación-Contracción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...